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beliefs

• An English affair . . .

? Rev. Thomas Bayes (1702–1761): “all you need is a good prior
(belief)” – Bayesian inference

? Sir Ronald Aylmer Fisher (1890–1962): “science starts with a large
sample” – Fisherian inference

• . . . and not so English:

? Cramér, Rao, Borel, Cantelli, Glivenko, Neyman
? Blackwell, Ferguson, Lehman, Shannon, Kolmogorov
? Basu, Levy, Dynkin, Wentzell, Freidlin, Varadhan
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Introduction Large deviations ...

2007 Abel Prize - S.S.R. Varadhan
(the “Nobel prize of mathematics”)

“ for his fundamental contributions to probability theory and in
particular for creating a unified theory of large deviations. ” - May 23,
2007.
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Equilibrium statistics - a physicist’s view

• Equilibrium = extremum of the appropriate thermodynamic potential
(entropy, subject to constraints).

• Why?

• Because Boltzmann said so;

• Because Gibbs said so;

• No, it’s because Shannon said so!

S(A ∪B) = S(A) + S(B)⇒ S = −kB〈log p〉 = −kB
∑
i

pi log pi.
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A closer look at entropy production - a Fisherian
(frequentist) approach

• Why does entropy increase?

• Because of Central Limit Theorem (R.A. Fisher)

• At given mean µ and variance σ2, the normal distribution maximizes the
Shannon entropy:

S(X) ≥ S(Y ), X ∼ N(µ, σ2), E(Y ) = µ, V (Y ) = σ2.
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Weak convergence theorems

• Central Limit Theorem: if Xi i.i.d. with mean µ, variance σ2, then

Xn =
X1 +X2 + . . .+Xn

n
→ N(µ, σ2/n)

Generalization for non-identical, independent variables: Lindeberg-Feller
theorem

• Corrections to CLT – Edgeworth expansion: if Fn(x) is the c.d.f. of√
n(Xn − µ)/σ, and β1 is the skewness coefficient, then

Fn(x) = erf(x)− β1(x2 − 1)
6
√

2nπ
e−x

2/2 +O(1/n)
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From normal to exponential Large deviations ...

Understanding the limits of CLT

• Deviations of order O(
√
n) are ’normal’:

P (nXn > nµ+ a
√
n) = P

[√
n(Xn − µ)

σ
> a

]
' erf(a)

• Deviations of order O(n) are ’large’

P (nXn > nµ+ na) =?

• Everything in between – use asymptotics from Edgeworth expansions.
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Understanding the limits of large sample theory

• A mice experiment ...

“ 331
3 % of the mice used in the experiment were cured by the test

drug; 331
3 % of the test population were unaffected by the drug and

remained in a moribund condition; the third mouse got away. ”

(from R. A. Day, AMS News, vol. 41, no. 7, pp 486-494.)

• Large sample test: small deviations must be gaussian.
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Bernoulli trials

Pn =
n∑

k=n(1+a)/2

n!
k!(n− k)!2n

'
[

n!
k!(n− k)!2n

]
k=1+a

2 n

P (Hn ≥ n(1 + a)/2) ' e−n[(1+a) log(1+a)+(1−a) log(1−a)]/2 = e−nQ[(1+a)/2]

Q(z) = z log z + (1− z) log(1− z) + log 2
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Examples, properties of Cramér functions

• Gaussian X ∼ N(µ, σ2): Q(z) = (z−µ)2

2σ2

• Poisson X ∼ P (λ): Q(z) = z log(z/λ) + λ− z

• Any Cramér function has a minimum at z = µ: Q(z) ≥ Q(µ) = 0.

• For some distributions, Q(z)−Q(−z) = const · z, fluctuation theorem

• Cramér function may be seen as generalized thermodynamic potentials
(see sup condition)
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Varadhan’s lemma and Laplace transforms

• Ω = space of deviations, Pn(Xn > a) satisfies LDP with Cramér function
Q(a), then

• Varadhan lemma:
∫
enF (a)dPn(a)→ exp{n supΩ[F (a)−Q(a)]}

• It’s an integrated version of LDP

• In the exponent, it effectively does a Lagrange transform of
thermodynamic potentials: Q→ Q− F
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Integrated large deviations

• Average the large deviation result 〈e−const·Σ〉 by a Laplace-transform
(Varadhan) formula:

〈e−const·Σ〉 =
∫ Σ(λ)

Σ(−λ)

ρ(Σ)e−const·ΣdΣ ∼ exp
[
log

ρ+

ρ−
+Q(Σ−)−Q(Σ+)

]

• For most systems, it becomes thermodynamic identity (free energy)

〈e−Σ〉 = eF (−λ)−F (λ).

• Derived for Langevin processes in V. Y. Chernyak et. al., op. cit.
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